

3.4 Zeros of Polynomial Functions

We know that an *n*th-degree polynomial can have at most n real zeros.

Now, in the complex number system, this statement can be improved.

That is, in the complex number system, every *n*th polynomial function has *precisely n* zeros.

Fundamental Theorem of Algebra.

If f(x) is a polynomial function of degree n, where n > 0, then f has at least one zero in the complex number system.

Linear Factorization Theorem.

If f(x) is a polynomial function of degree n, where n > 0, then f has precisely n linear factors $f(x) = an(x - c_1) (x - c_2)... (x - c_n)$ where $c_1, c_2, ..., c_n$ are complex zeros.

$$\chi^{3}-64 = (\chi -4)(\chi^{2}+4\chi+16)$$

$$(\chi -4)(\chi -(2+2i\sqrt{3}))(\chi -(-2-2i\sqrt{3})) = -12$$

$$(\chi -4)(\chi +2-2i\sqrt{3})(\chi +2+2i\sqrt{3}) = -12$$

$$(\chi -4)(\chi +2-2i\sqrt{3})(\chi +2+2i\sqrt{3}) = -2+2i\sqrt{3}$$

$$-2+2i\sqrt{3}$$

a)
$$f(x) = x - 2$$

$$(x-2)$$

b)
$$f(x) = x^2 - 6x + 9$$

 $(x-3)(x-3)$

c)
$$f(x) = x^3 + 4x$$

 $\chi(\chi^2 + 4)$
 $\chi(\chi + 2i)(\chi - 2i)$

d)
$$f(x) = x^4 - 1$$

 $(x^2 - i)(x^2 + 1)$
 $(x - i)(x + i)(x - i)$

Rational Zero Test

If a polynomial has integer coeffecients, then every rational zero of the polynomial has the form:

where p and q have no common factors and,

p = a factor of the constant term
q = a factor of the leading coefficient

Possible rational zeros:

factors of constant
factors of leading coeffecient

Find the rational zeros of: $f(x) = x^3 + x + 1$

Find the rational zeros of:

$$f(x) = x^{4} - x^{3} + x^{2} - 3x - 6 \qquad p = 6$$

$$q = 1$$

$$-1 \qquad 1 - 3 - 6$$

$$-1 \qquad 2 - 3 \qquad 6$$

$$(x^{3} - 2x^{2})(+3x - 6) \qquad p = \frac{\pm 1,2,3,6}{4}$$

$$(x^{2} (x - 2) + 3(x - 4)) \qquad = x,2,3,6,6,23,6$$

$$(x + 1) (x - 2) (x - i \sqrt{3})(x + i \sqrt{3})$$

$$(x + 1) (x - 2) (x - i \sqrt{3})(x + i \sqrt{3})$$

Find the rational zeros of: $f(x) = 2x^3 + 3x^2 - 8x + 3$

Conjugate Pairs

If f is a polynomial function with real coefficients, then whenever a + bi is a zero of f, a - bi is also a zero of f.

Find a fourth degree polynomial with real coefficients that has -1, -1, and 3i as zeros , - 3;

$$(\chi+1)^2(\chi^2+9)$$

Find all the zeros of: $f(x) = x^4 - 3x^3 + 6x^2 + 2x - 60$ given that 1 + 3i is a zero Use the given zero to find all the zeros of the function:

$$f(x) = 2x^3 + 3x^2 + 50x + 75$$

zero = 5i ,-5i \Rightarrow ($x^2 + 25$)

$P = \frac{1}{2} \frac{1}{2}, \frac{3}{4}, \frac{4}{5}, \frac{4}{5}, \frac{12}{12}$

 $\frac{2}{3}, \frac{3}{4}, \frac{3}{2}, \dots$

Narrowing down the search:

-Descartes's Rule of Signs

how many real pos. I meg zero's

-Upper and Lower Bounds

Renee Descartes

1596-1650

Cartesian coordinate

Descartes's Rule of Signs:

1. The number of positive real zeros of a polynomial is either equal to the number of variations in sign of the polynomial or less than that number by an even integer.

$$f(x) = 3x^3 - 5x^2 + 6x - 4$$

Descartes's Rule of Signs:

2. The number of negative real zeros of a polynomial is equal to the number of variations in sign of the opposite of the polynomial (f(-x)) or less than that number by an even(2) integer.

$$f(x) = 3x^3 - 5x^2 + 6x - 4$$

Let f(x) be a polynomial with real coefficients and a positive leading coefficient. Suppose f(x) is divided by (x - c), using sythetic division.

Upper Bounds:

If c > 0 and each number in the last row is either positive or zero, c is an upper bound for the real zeros of f.

Lower Bounds:

If c < 0 and the numbers in the last row are alternately positive and negative (zero entries count as positive or negative), c is a lower bound for the real zeros of f. Find all the real zeros of:

$$f(x) = 12x^3 - 4x^2 - 27x + 9$$

HW: Pg 308 #2,9,18,19,25,29,38, 47,62,105